Handout for
Integrating the Neurologic Examination
for the Neuropsychologist:
Neuroanatomic Localization of Common
Pathologies, Interventions and Higher
Cognitive Functions

Lola Morgan, MD

- History and Examination are key to diagnosing a neurological complaint.
- Adequate knowledge of anatomy, physiology, biochemistry and clinical features of the nervous system.
- An experienced neurologist can hypothesize based on a history which neurologic findings will be present or absent.
 Neurologic examination is used to confirm or refute the hypothesis. ⁶

- Chief Complaint
- History of present illness
- Past Medical History (including developmental milestones, as appropriate)
- Medications
- Family History
- Social History
- Review of Systems

All elements are influenced by memory, intelligence, language function, social, economic, and psychiatric features.

- After completion of history, the goal is to have an anatomic localization.
- "Principle of parsimony"
- Occam's razor

• Localization

Cortex

Subcortex

Brainstem and cerebellum

Spinal Cord

Radicular

Peripheral nerve

Neuromuscular junction

Cortex

Frontal

Motor, fluency, prosody, attention, processing, planning, behavior/personality

Temporal

Memory, language, auditory function

Parietal

Somatosensory, sensory association function,

Occipital

Visual, visual association cortices

Images courtesy of Gray's anatomy and Hardin MD/images

Subcortical

basal ganglia

caudate, putamen, globus pallidus, substantia nigra, subthalamic nucleus

thalamus

sensory relay to cortex

hypothalamus

homeostasis, endocrine, autonomic, limbic

Diagram courtesy of HOPES brain tutorial, Stanford University

• Brainstem

Cranial nerves, descending motor, sensory, and cerebellar pathways, cardiac and respiratory function reticular activating system, midline raphe

• Cerebellum

indirectly influences motor pathways to coordinate and plan movement, regulate eye movements and balance

Spinal cord

- Radicular
 - 31 pairs of nerves
 - 8 cervical
 - 12 thoracic
 - 5 lumbar
 - 5 sacral
 - 1 coccygeal

- Peripheral nerves
 - motor
 - sensory
 - autonomic
- Neuromuscular junction

impairments result in motor dysfunction without sensory involvement

• Components of the neurologic examination⁷

Mental status

General behavior and appearance

Stream of talk

Mood and affective responses

Content of thought

Intellectual capacity

Sensorium

Speech

Dysphonia

Dysarthria

Dysprosody

Aphasia

• Components of the neurologic examination

Head and Face

Facial gestalt

Head abnormalities in symmetry or shape, measure circumference Look at the eyes for ptosis, pupillary size, interorbital distance Auscultate for bruits over neck vessels, eyes, temples Components of the neurologic examination

Cranial nerves

I—Olfactory

use an aromatic (coffee e.g.) non irritating substance

II--Optic

Acuity and testing of peripheral fields by confrontation

III, IV, and VI
Pupillary light reflexes
Ocular motility

 Components of the neurologic examination Cranial Nerves

V-inspect the masseter and temporalis muscle bulk test all three divisions of facial sensation corneal reflex (V-VII reflex arc)
VII—muscles of facial expression
VIII—hearing

• IX and X:

listen for phonation and articulation (labial, lingual, and palatal sounds)

XI-spinal accessory
test head movement and shoulder shrug

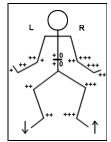
XII—hypoglossal
tongue protrusion and inspect for atrophy

Motor

Muscle tone—make passive movements of joints to test for spasticity, rigidity or hypotonia. Determine if findings are upper motor neuron or lower motor neuron in origin Strength testing—graded on scale of 0 to 5

- 0 no movement
- 1 twitch
- 2 some movement
- 3 movement against gravity
- 4 less than full power
- 5 full power against resistance

Upper motor neuron


- Weakness
- No atrophy
- No fasiculation
- Increased tone
- Hyperreflexia

Lower motor neuron

- Weakness
- Atrophy
- Fasiculation
- Decreased tone
- Decreased reflexes

• Deep tendon reflexes graded on a 0 to 4+ scale

jaw jerk (V afferent; V efferent) biceps reflex (C5-C6) brachioradialis (C5-C6) triceps reflex (C7-C8) finger flexion reflex (C7-T1) knee jerk (L2-L4) ankle jerk (L5-S1)

Sensation

superficial sensory (light touch, temperature, pain) deep sensory (joint position sense, vibration sensation higher sensory function (graphesthesia, astereognosis, statognosis)

• Cerebellar

Eye movements

Finger to nose

Rapid alternating hand

movements (dysdiadochokinesia)

heel to shin

• Gait

initiation

balance

fluidity

tempo

turns

adventitious movements

Formulation

- Formulation or assessment
- Several sentences synthesizing chief complaint, history, neurologic findings which localize the anatomic origin and provide a potential list of diagnoses

- Unusual presentations of common diseases are more frequent than common presentations of rare diseases
- Generation of a differential diagnosis--I VINDICATE AIDS

IatrogenicAllergicVascularIdiopathicInfectiousDrugsNeoplasticSocial

Degenerative Inflammatory Congenital Autoimmune Trauma Endocrine Disease and the Neurologic Examination

Neurodegenerative

Vascular

Traumatic brain injury

Epilepsy

Psychosomatic

Post surgical

• Neurodegenerative

Alzheimer's disease

Amyotrophic lateral sclerosis Fronto-temporal Dementia

Parkinson's disease Lewy Body Disease Multiple System Atrophy

• Alzheimer's disease⁸

memory disturbance subsequent language and visuospatial dysfunction neuropsychiatric dysfunction depression

delusions

behavioral disturbances

wide variation

most prominent abnormalities on examination are higher cognitive function

• Neurologic examination

frontal release signs or primitive reflexes (snout, suck, grasp)

gegenhalten

variable resistance to passive movement

myoclonus

seizures

• Amyotrophic Lateral Sclerosis

Degeneration of motor neurons resulting in progressive weakness

Neurologic examination classically with mixture of upper and lower motor neuron findings

- Hyperreflexia
- Increased tone
- Atrophy
- Fasciculations
- Weakness

- Overlap syndrome⁹
- 30% of ALS patients may have frontotemporal dementia
- 15% of FTD patients may have ALS

• Fronto-temporal dementia8

Primitive reflexes

Clinical features reflect regional atrophy

Frontal: Orofacial apraxia

Perseveration

Echolalia or palilalia

Apathy

Temporal: Aphasia

Oral exploratory behavior Otherwise, nonfocal exam

• Parkinson's disease

Rigidity

Rest tremor

Bradykinesia

Asymmetry

Masked fascies

Decreased blink

Micrographia

Hypophonia

Seborrhea

Bradyphrenia

- Approximately 2/3rds of patients with PD develop cognitive deficits
- Up to 40% of patients with PD develop dementia attributed to the presence of Lewy bodies¹⁰

• Lewy Body Dementia

Neurologic exam with findings of Parkinson's Disease Falls Autonomic disturbances

Hallucinations

40-65% of people with RBD develop LBD 12

• Multiple System Atrophy

Autonomic failure associated with variable manifestations of Parkinsonism, cerebellar and pyramidal dysfunction

V

Vascular disease
 Stroke syndromes

Arterial Territory

Multi-infarct dementia

 Neurologic exam of middle cerebral artery strokes contralateral hemianopsia conjugate eye deviation to side of stroke contralateral hemiplegia hemianesthesia

Dominant hemisphere involvement with aphasia Nondominant hemisphere involvement with hemineglect Neurologic examination of anterior cerebral artery strokes rare--<3% of strokes lower extremity weakness
 Deviation of head and eyes toward side of lesion Abulia

 Neurologic examination of posterior cerebral artery strokes quadrantanopsia

involvement of splenium of corpus callosum results in alexia without agraphia

visual agnosia

amnesia

bilateral infarctions of occipital lobes result in Anton's syndrome cortical blindness and denial of blindness

bilateral infarctions of occipito-parietal lobes result in Balint's syndrome optic ataxia, oculomotor apraxia, and simultanagnosia

• Neurologic examination of multi-infarct dementia¹²

accumulation of defects through multiple cortical strokes type of cognitive decline related to regional involvement Distinction between subcortical and cortical involvement Neurologically, cortical involvement will demonstrate aphasia, amnesia, visuospatial disturbances

Subcortical involvment accompanied by motor signs of gait disturbance, stooped posture and lack of facial features

Neurologic findings reveal minor findings

increased tone, asymmetric reflexes, extensor plantar response, visual field abnormalities, subtle hemiparesis or clumsiness

• Traumatic Brain Injury¹³

mild TBI/concussion

defined as a blow to head with loss of consciousness less than 30 minutes, amnesia peri-event and up to a one day after the injury, normal structural imaging, GCS 13-15

present with physical, cognitive, emotional symptoms which are self limited to 4-6 weeks

10% of patients continue to complain of symptoms Neurologic exam is nonlocalizing

Epilepsy

Geschwind Syndrome¹⁴—Intense emotional life, hypergraphia, circumstantiality, hyposexuality, hyper religiosity

Neurologic examination is usually nonfocal Subtle elements based on localization of seizure onset

Psychosomatic

Symptom complex presentation without identifiable medical cause

Neurologic examination with multiple soft findings which are inconsistent

Hoover's sign

Astasia/abasia

Waddell's signs

- Tenderness tests: superficial and diffuse tenderness and/or nonanatomic tenderness
- Simulation tests: these are based on movements which produce pain, without actually causing that movement, such as axial loading and pain on simulated rotation
- Distraction tests: positive tests are rechecked when the patient's attention is distracted
- Regional disturbances: regional weakness or sensory changes which do not localize to neuroanatomy
- Overreaction: subjective signs regarding the patient's demeanor and reaction to testing

Neurosurgical intervention Epilepsy

Epilepsy

temporal lobectomy

Visual field cut

Dominant lobe—word finding difficulty, memory loss

Laser ablation of hippocampus

Neurosurgical intervention **Epilepsy**

- Frontal lobectomy
- Corpus callosotomy

- 1. York GK, Steinberg DA. Neurology in Ancient Egypt. Chap 3, Handbook of Clinical Neurology. 2010: 95; 29-36.
- $2.\ Patten, BM.\ The\ History\ of\ the\ Neurologic\ Examination.\ Journal\ of\ the\ History\ of\ the\ Neurosciences.\ 1992\ Jan; 1(1):3-14$
- 3. Pinchot RB, Gersten J Eds. The brain: mystery of matter and mind. Washington DC: US New Books; 1930.
- 4. Vesalius A. De humani corporis fabrica libri septem. In: Porter R, ed. Cambridge illustrated history of medicine. Basel: Joannes Oporinus; 1543. 156.
- 5. Gall, Francis. The Anatomy and Physiology of the Nervous System in General and the Brain, In Particular.
- 6. Bradley, Walter G. et al. Diagnosis of Neurological Disease, Principles of Diagnosis and Management. Butterworth Heinemann; 2000: 3-8.
- $7.\ DeMyer, William.\ Technique\ of\ the\ Neurologic\ Examination, 4^{th}\ ed.\ Mcgraw\ Hill\ Corporation, 1994.$
- 8. Rossor, M.N. Primary Degenerative Dementia, Chap 70, Neurology in Clinical Practice II. Bradley W. Et. Al. Butterworth Heinemann; 2000: 1703-20.
- 9. Lomen-Hoerth, C. Clinical phenomenology and neuroimaging correlates of ALS-FTD. Journal of Molecular Neuroscience. 2011
- Nov;45(3):656-62. Epub 2011 Oct 5.

 10. Van Den Burge, S. et al. Dementia in Parkinson's Disease Correlates with Alpha-synuclein but not with Astrogliosis. Parkinson's Disease Volume 2012 (2012), Article ID 420957, pp 1-13
- 11. Postuma, RB, Gagnon, MJ, Monplasir JY. REM sleep behavior disorder: from dreams to degeneration. Neurobio Dis2012 Jun;46(3):553-8. Epub 2011 Oct 14.
- 12. Hijdra A, and Sheltens P. Diagnostic Criteria for Vascular Dementia. Haemostasis 1998 May-Aug;28(3-4):151-7.
- 13. Management of Concussion/mild TBI working group. VA/DoD Clinical Practice Guideline for management of concussion/mild traumatic brain injury. April 2009.
- 14. Waxman SG, Geschwind N (December 1975). The interictal behavior syndrome of Temporal lobe epilepsy. *Arch. Gen.* Psychiatry 32 (12): 1580-6
- 15. Waddell, Gordon; John McCulloch, Ed Kummel, Robert Venner (March/April 1980). "Nonorganic Physical Signs in Low-Back Pain". Spine 5 (2): 117–125.