

Pediatric Grand Rounds

Ashlee Loughan PhD
Christen Holder PhD, Amanda Rach MS
Alison Wilkinson-Smith PhD, Benjamin Greenberg MD

Renee Lajiness-O'Neill PhD, Christine Salinas PhD, Michael Westerveld PhD, Philip Fastenau PhD

Financial Disclosure

The presenters, discussants and I have no financial relationships to disclose.

Demographics

- Rare syndrome first described in 1997
 - Multiple name changes given defining characteristics (M-CMTC, M-CM, M-CAP)
 - In 2012, Genetic mutation identified in gene PIK3CA
 - Mutation is thought to always occur after cell division begins de novo mutation
- Website Registry = 181 cases

Registered
32
100
37
12

- Literature Reports = 150 cases
- Across genders
- Across ethnicities

http://works-progress.com/portfolio/m-cm-network/

Diagnostic Criteria

Proposed Clinical Criteria for Diagnosis (Martínez-Glez et al., 2010)

Major Criteria (requires 3)

- Macrocephaly *
- Capillary malformation(s) *
- Overgrowth/asymmetry *
- Neuroimaging alterations:
 - Ventriculomegaly *
 - Cavum septum pellucidum or Frontal bossing cavum septum vergae
 - Cerebellar tonsillar herniation
 - o Cerebral and/or cerebellar asymmetry *

Minor Criteria (requires 2)

- Midline facial capillary malformation
- Neonatal hypotonia
- Syndactyly/polydactyly *
- Connective tissue abnormalities
- Hydrocephalus *
- Developmental delay *

Martinez-Glez et al. were able to diagnose 94% of 136 previously reported cases using their criteria.

Literature Cont...

• Important Note:

- To date, MCAP does not appear to be a condition associated with regression or decline in a person's cognitive functioning; unless an exacerbation of neuropathological processes occurs.
- Children with MCAP are expected to make slow progress developmentally.
- However, most children with this disorder continue to be consistently behind their peers in both academic and functional abilities.

CHALLENGE

This diverse presentation proves to be an obstacle when trying to identify cognitive or behavioral patterns in MCAP.

Currently, there is no cure for M-CAP Treatment varies depending on a multitude of factors including the presence and severity of specific impairments

CASE STUDY

- Frances "Franny" Brown
- Diagnosed with M-CAP at age 4 months
- Referral
 - Global delays
 - Reported inattention
 - Recent academic deficits / regression

Gender	Female
Age	7
Education	1 st grade public education
Handedness	Right
Ethnicity	Caucasian
Socioeconomic Status	Upper Middle Class
Parental Education	Bachelors Degree

Developmental History

- · Prenatal history uncomplicated
- · Upon delivery, presented with
 - Cutis marmorata
 - Port wine stains
 - Large head (95th percentile then "off the chart")
 - Feet malformations
- · Genetic testing none
- · All developmental milestones delayed
- · Continued motor deficits

Medical History

- Macrocephaly **
- Hemihyperplasia **
- Capillary malformations **
- Headaches
- Hydrocephalus *
- Partial complex seizures (age 2 ½)
- Syndactyly / polydactyly *
- Muscle spasms
- Bladder incontinence
- Chronic ear infections
 - Comorbid hearing impairment
 - Currently wears hearing aids in both ears

- Surgery History (to date):
 - Ventriculoperitoneal shunt
 - (2 revisions)
 - Fourth ventricle shunt
 - (1 revision)
 - Tonsillectomy
 - Adenoidectomy
 - Spinal fenestration of an arachnoid cyst
 - Chiari decompressions (3)
 - Spinal shunt
 - (1 revision)
- Medications
 - Keppra, Trileptal, prevacid

Medical History

Neuroimaging (MRI) Findings:

- Brain asymmetry / left hemimegalencephaly
- Hydrocephalus (shunt placements)
- Chiari malformations
- Distortion of cerebellar hemisphere
- White matter signal hyperintensities

Interpretation / Take Home

- Consistent with MCAP literature, Franny presented with multiple neurologic complications which should raise concerns and can impact cognitive development
- Testing demonstrated global developmental delays and many cognitive deficits
- Significant strength was evident in Frannys visual memory
- Most concerning was that cognitive performance had declined NOT TYPICAL
- Comorbid hearing impairment made for additional challenges

Recommendations

Educational Placement

- Individualized Education Plan (IEP)
- Hearing impaired specialist for teacher
- Instruction should take place in a 1-on-1
- Integration into general education
- Speech and Language Therapy, Occupational Therapy, and Physical Therapy

Neurology Consultation

Urgent given regression

Cognitive and Academic Recommendations:

- Implement visual instruction / learning
- Make learning meaningful
- Focus on functionality
- Repetition is key
- Provide a structured and explicit learning environment
- Attention
- Reading
- Rewards plan

Neuropsychological Re-Evaluation.

Annually

References

- Barkovich, A. J., Kuzniecky, R. I., Jackson, G. D., Guerrini, R., & Dobyns, W. B. (2005). A developmental and genetic classification for malformations of cortical development. Neurology, 65, 1873-1887.
- Brill, C. B., Gutierrez, J., & Mishkin, M. M. (1997). Chiari I malformation: Association with seizures and developmental disabilities. *Journal of Child Neurology*, 12, 101-106.
- Conway, R. L., Pressman, B. D., Dobyns, W. B., Danielpour, M., Lee, J., Sanchez-Lara, P. A., Graham, J. M. (2007). Neuroimaging findings in macrocephaly-capillary malformation: A longitudinal study of 17 patients. American Journal Medical Genetics, 143, 2981–3008.

 Dennis, M., Fitz, C. R., Netley, C. T., Sugar, J., Harwood-Nash, D. C., Hendrick, E. B., Humphreys, R. P. (1981). The intelligence of hydrocephalic children. Archives of Neurology, 38, 607-615.

- Ercan, T. E., Oztunc, F., Celkan, T., Bor, M., Kizilkilic, O., Vural, M., Tuysuz, B. (2012). Macrocephaly-capillary malformation syndrome in a newborn with tetralogy of fallot and sagittal sinus thrombosis. *Journal Child Neurology*, *28*(1), 115-119. Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., . . . Morris, R.D. (1996). Attention skills and executive functions in children with early hydrocephalus. *Developmental Neuropsychology*, *12*(1), 53-76.
- Derkinson, M. D., Campbell, S., Hayhurst, C., Clark, S., Kandasamy, J., Lee, M. K., . . . Mallucci, C. L. (2011). Cognitive and functional outcome in spina bifida Chiari II malformation. Chiaf Nervous System, 27, 967-974.
- Konczak, J. & Timmann, D. (2007). The effect of damage to the cerebellum on sensorimotor and cognitive function in children and adolescents. Neuroscience and Behavioral Reviews, 31, 1101-1113.
- Kuint, J., Globus, O., Ben Simon, G. J., & Greenberger, S. (2012). Macrocephaly-capillary malformation presenting with fetal arrhythmia. Pediatric Dermatology, 29,
- Lindquist, B., Persson, E., Uvebrant, P., & Carlsson, G. (2008). Learning, memory, and executive functions in children with hydrocephalus. Acta Paediatrica, 97, 596-601.
- Martinez-Glez, V., Romanelli, V., Mori, M. A., Gracia, R., Segovia, M., González-Meneses, A., . . . Lapunzina P. (2010). Macrocephaly capillary malformation: Analysis of 13 patients and review of the diagnostic criteria. American Journal Medical Genetics, 152, 3101–3106.

 Mirzaa, G. M., Conway, R. L., Gripp, K. W., Lerman-Sagie T., Siegel D. H., deVries L. S., . . . Dobyns W. B. (2012). Megalencephaly-capillary malformation (MCAP) and megalencephaly-polyadactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: Two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. American Journal Medical Genetics, 158, 269–291.
- Mirzaa, G. M., Conway, R., Graham, J. M., Dobyms, W. B. (2013). PIK3CA-Related Segmental Overgrowth. GeneReviews
- http://www.nobi.nlm.nih.gov/books/NBK153722/.

 Mirza, G. M., Civiere, J. B., & Dobyns, W. B. (2013). Regalocephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 163(2), 122-130.
- Papetti, L., Tarani, L., Nicita, F., Ruggieri, M., Mattiucci, C., Mancini, F.,...Spalice, A. (2012). Macrocephaly-capillary malformation syndrome: Description of a case and review of clinical diagnostic criteria. Brain & Development, 34, 143-147.
 Riviere, J. B., Mirzaa, G. M., O'Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L.,... Dobyns, W.B. (2012). De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genetics, 44(8), 934-40.
- Wills, K. E. (1993). Neuropsychological functioning in children with spina bifida and/or hydrocephalus. Journal of Clinical Child Psychology, 22, 247-265.

Introduction

- Pseudotumor cerebri syndrome (PCS) is a progressive disorder marked by increased intracranial pressure without a known cause.
- A rare disorder in children, particularly prior to the age of 11
- Research on PCS related cognitive deficits have almost exclusively investigated adults.
- This presentation will provide a case study of childhood PCS

Pseudotumor Cerebri Syndrome (PCS)

Symptoms

- Mimics sx of brain tumor
- Headache
- Papilledema
- Blurred vision
- Increased CSF pressure

Course

- Develops over weeks or months
- •Absence of enlarged ventricles or a mass
- Most common in obese adult women of childbearing age

Treatment

- •Lumbarperitoneal shunting
- Lumbar puncture
- Corticosteroids
- Weight reduction

Previous Literature

- Limited research into cognitive implications of PCS
 - Adult studies ranging from 20y 56y, with one 15yo included
 - · Almost exclusively female
- Most common findings
 - · General verbal deficits in language, memory, and fluency
 - · General memory deficits
 - Executive dysfunction and poor cognitive flexibility
 - · Slowed processing speed and reaction time
 - Visual-spatial deficits
- Most patients do not show cognitive improvement, despite treatment
- No patients show evidence of brain damage/malformation on CT/MRI to indicate cause of impairment Le Bonheur

Case study: 12-year-old female "K"

Reason for Referral

- Memory difficulties
- Academic difficulties
- Impaired sense of time
- Impaired hygiene
- Fatigue and poor sleep

Demographics

- 6th grade with 504 plan
- Right-handed
- PCS diagnosed in 2011 (9yo)
 - Papilledema
 - Daily headaches
- BMI 97th percentile

Developmental history

- Unremarkable pregnancy/birth
- Milestones achieved within normal limits
- Medical history unremarkable

Current medical issues

- Optic Nerve Drusen w/papilledema
- 1-2 headaches per month
- Snoring and daytime sleepiness
- No prescribed medications
- Unremarkable MRI/MRV (repeat studies)

Surgical history

- Strabismus 2013, 2014
- Lumbar peritoneal shunt 2013

Tests Administered		
Domain	Tests	
Intelligence	Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV)	
Academic Achievement	Woodcock-Johnson Tests of Achievement, Third Edition (WJ-III) Gray Oral Reading Tests, Fifth Edition (GORT-5)	
Language	Boston Naming Test Peabody Picture Vocabulary Test, Fourth Edition (PPVT-4) Expressive Vocabulary Test, Second Edition (EVT-2)	
Motor	Grooved Pegboard Test	
Visuoperceptual	Benton Judgment of Line Orientation (JLO) Beery Developmental Test of Visual Perception Beery Developmental Test of Visual-Motor Integration (VMI)	
Memory	Test of Memory and Learning, Second Edition (TOMAL-2) Rey-Osterrieth Complex Figure Test (RCFT)	
Executive Functioning	Delis-Kaplan Executive Function System (D-KEFS) Wisconsin Card Sorting Test (WCST)	
Behavior and adaptive functioning /ERSITYo/TENNESSEE	Adaptive Behavior Assessment System, Second Edition (ABAS-II) Behavior Rating Inventory of Executive Function (BRIEF) Behavior Assessment System for Children, Second Edition (BASC-2)	

Impressions

- Overall borderline impaired intellectual functioning and mildly impaired adaptive functioning
- Diffuse impairment in multiple areas of functioning
 - Comprehension
 - Memory across domains
 - Visual-perception and visual-construction
 - Motor speed/coordination
 - Confrontational visual naming/word retrieval
- Pockets of preserved cognition

Treatment Recommendation Pseudotumor

- Changes to modifications/accommodations on ? implementation of IEP
- Strategies for slow learners emphasizing dividing tasks in to smaller units, repetition with frequent practice
- Use of visual memory aids and routines to maintain consistency
- Mathematics tutoring and reading comprehension intervention
- Chart system for hygiene
- Referral to the Sleep Disorders Clinic

Case in Context

- In comparison to previous literature
 - Pattern of deficits were largely consistent with previous literature.
 - Particularly notable is her Borderline IQ with greater deficits in Verbal Comprehension – many adults did not have general impairments in IQ
- Relevance to field
 - Although some view PCS as a "benign" condition, our findings suggest that diffuse cognitive deficits and impaired functioning are likely and will require intervention
 - Will the condition become more prevalent in children as childhood obesity rises?

References

- 1. Arseni, C., Simoca, I., & Jipescu, I., et al. (1992). Pseudotumor cerebri: Risk factors, clinical course, prognostic criteria. Rom J Neurol Psychiatry, 30, 115-132.
- 2. Kaplan, C., Miner, M., & McGregor, J. (1997). Subject review with case study: Pseudotumour cerebri risk for cognitive impairment. Brain *Injury, 11*(4), 293-303.
- 3. Kharkar, S., Batra, S., Metellus, P., Hillis, A., Williams, M. A., & Rigamonti, D. (2011). Cognitive impairment in patients with pseudotumor cerebri syndrome. Behavioural neurology, 24(2), 143-148.
- 4. Sørensen, P. S., Thomsen, A., & Gjerris, F. (1986). Persistent disturbances of cognitive functions in patients with pseudotumor cerebri. Acta neurologica scandinavica, 73(3), 264-268.
- 5. Yri, H. M., Fagerlund, B., Forchhammer, H. B., & Jensen, R. H. (2014). Cognitive function in idiopathic intracranial hypertension: a prospective case-control study. BMJ open, 4(4), e004376. Le Bonheur

THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER

The Princess and the P-Value:

Functional Neurological Symptoms and Rare Neuroimmunological Disease

Alison Wilkinson-Smith, Ph.D., ABPP Benjamin Greenberg, M.D.

Dallas, Texa

Privileged and Confidentia

The Need for Collaboration

- Pediatric neuroimmunology is a rapidly changing field with many unknowns.
- Functional neurological symptoms are also poorly understood in children, and often considered only when medical causes are ruled out.
- This case highlights the need for collaboration between neuropsychologists and neurologists.

children'shealth?...

UTSouthwestern

Dallas, Texas

Privileged and Confidential

42

Demographics and Reason for Referral

- Kate: 12 year old Caucasian girl with suspected autoimmune encephalitis
- Normal early history until onset of symptoms two years ago
- Withdrew from rigorous private school in order to homeschool
- Participation in competitive gymnastics league
- · Only child, living with both parents
- Family history noncontributory

Dallas, Texa

ivileged and Confidential

....

Symptoms

- "Disney Princess" voice and mannerisms appeared following strep throat infection
- Approximately six months later developed additional neurological symptoms following urinary tract infection and flu mist vaccine
 - Dilated pupils
 - Agitation
 - Repetitive and tic-like behaviors
 - Dizziness
 - Headaches
 - Cognitive changes (memory, math, "brain fog")
 - Slurred/pressured speech
 - "Emotional fatigue"
- · Symptoms worsened and she was "almost comatose"

Dallas, Texa

rivileged and Confidential

44

Medical Evaluations and Testing

- Multiple previous specialists
 - Neurology
 - Gastroenterology
 - Psychiatry
 - Infectious Disease
 - Chiropractic
 - Applied Behavior Analysis
 - Complementary and Alternative Medicine
- Negative strep titres
- · Normal MRI of the brain
- Normal EEG
- Abnormal CSF results
 - Elevated interleukin 6 and 8
 - S100B of unclear significance

Dallas, Texas

rivileged and Confidential

Treatments

- Injection of rocephin (symptom improvement for 24 hours)
- Intravenous immunoglobulin (brief improvement)
- Plasmapheresis (brief improvement)
- Scheduled to undergo additional intravenous immunoglobulin treatments

children'shealth

UTSouthwestern

Dallas, Texas

Privileged and Confidentia

Impressions and Recommendations

- · Autoimmune encephalitis
 - Continue with plan for intravenous immunoglobulin
 - Neuropsychological re-evaluation post-treatment
- · Functional neurological symptoms
 - Consider psychotherapy for stress management and coping skills

Two Months Later

- Additional course of intravenous immunoglobulin completed
- No other treatments or changes
- Family reports improvements in symptoms
 - Memory problems and "brain fog"
 - Voice and mannerisms
 - Anxiety
- Improvements most noticeable immediately following treatment

Dallas, Texa

ivileged and Confidential

Follow-Up Testing: Selected Scores 120 110 100 70 50 30 RAVLT LD WISC-IV PSI RAVLT 1-5 RAVLT SD RAVLT Rec Performance on all tests represented as standard scores with children'shealth. UTSouthwestern higher scores reflecting optimal performance

Impressions and Recommendations

- · Autoimmune encephalitis
 - Further treatment planning deferred to neurology
- Functional neurological symptoms
 - Consider psychotherapy for stress management and coping skills
 - Mindful return to school

Dallas, Texa

rivileged and Confidential

Eight Months Later

- Enrolled in public school
- Non-competitive gymnastics club
- Noticeable improvements in voice and mannerisms
- · Family complaints of residual mild memory deficits
- All other symptoms resolved

Dallas, Texas

ivileged and Confidential

Lessons Learned

- Assessment of rare neuroimmunological disease is inexact and ever-evolving, particularly in pediatrics
- Functional neurological symptom exacerbation can be considered alongside medical etiology
- Multidisciplinary collaboration can promote the best outcomes for patients and families

Dallas, Texas

rivileged and Confidential

J

Pediatric Grand Rounds

Ashlee Loughan PhD
Christen Holder PhD, Amanda Rach MS
Alison Wilkinson-Smith PhD, Benjamin Greenberg MD

Renee Lajiness-O'Neill PhD, Christine Salinas PhD, Michael Westerveld PhD, Philip Fastenau PhD