



## **Financial Disclosure**

- No relevant conflicts of interest
  - relevant conflicts or interest <u>Employment</u>: Children's Hospital Colorado <u>Consulting</u>: No financial payment for TBI roles. Have served on CDC Pediatric Mid TBI Expert Parel and the Miid TBI/Concussion Work Group, NINDS Common Data Elements Project. Have received payment for consulting work on several non-TBI related projects. <u>Consulting</u>: Financial payment from PAR as expert reviewer during development of the Memory Validity Profile (MPV; Sherman & Brooks, 2015). No financial compensation from the ealer of the tete.
  - sale of the tests.

  - sale of the tests.
     Stock ownership: No relevant investments.
     Research support: Principal investigator, co-investigator, or collaborator on pediatric TBI grants funded by numerous organizations including CDC, NIDRR, NIMH, Colorado TBI Trust Fund, Children's Hospital Colorado.
     Honoraria: Have received honoraria and expense relimbursement from multiple institutions and professional scientific bodies for presenting pediatric TBI and validity testing work at meetings, conferences, and symposiums.
     Royalties: I receive royalties on the sale of these books:
     Kirkwood, MW, & Yeates, K.O. (Eds.). (2012). Mild Traumatic Brain Injury in Children and Addescents: Form Basic Science to Clinical Management New York: Guilford
  - - and Adolescents: From Basic Science to Clinical Management. New York: Guilford Press

  - Press. Stucky, K., Kirkwood, M.W., & Donders, J. (Eds.). (2014). Clinical Neuropsychology Stucky Guide and Board Review. New York: Oxford University Press. Armstrong, K.S., Beebe, D.W., Hilsabeck, R.C., & Kirkwood, M.W. (2008). Board Certification in Clinical Neuropsychology: A Guide to Becoming ABP/ABCN Certified without Sacrificing Your Sanity. New York: Oxford University Press.









| Characteristic                              | п                             | % of total sample<br>that report any activity in this area |
|---------------------------------------------|-------------------------------|------------------------------------------------------------|
| Number of Clinical Assessments Per Month    | 282 (mean = 8.5,<br>SD = 7.0) |                                                            |
| Ages of Patients Seen for Assessments       |                               |                                                            |
| 0-5 years                                   | 185                           | 65.6                                                       |
| 6-12 years                                  | 267                           | 94.7                                                       |
| 13-17 years                                 | 277                           | 98.2                                                       |
| 18+ years                                   | 233                           | 82.6                                                       |
| Language for Assessments                    |                               |                                                            |
| English (100% of the time)                  | 238                           | 84.4                                                       |
| Spanish (At least some of the time)         | 35                            | 13.3                                                       |
| French (At least some of the time)          | 4                             | 1.6                                                        |
| Other Languages (At least some of the time) | 16                            | 5.8                                                        |
| Professional Settings                       |                               |                                                            |
| Private Practice                            | 146                           | 52.1                                                       |
| Hospital                                    | 177                           | 63.0                                                       |
| Schools                                     | 10                            | 3.6                                                        |
| Prison/Detention Centre                     | 2                             | 0.8                                                        |
| Psychiatric Facility                        | 7                             | 2.8                                                        |
| Academics                                   | 26                            | 9.3                                                        |
| Other                                       | 12                            | 4.3                                                        |
| Professional Activities                     |                               |                                                            |
| Clinical Assessment                         | 275                           | 97.9                                                       |
| Forensic Medico-Legal                       | 89                            | 31.7                                                       |
| Therapy                                     | 72                            | 25.6                                                       |
| Trainee Supervision                         | 163                           | 58.0                                                       |
| Research                                    | 127                           | 45.2                                                       |
| Classroom Teaching                          | 39                            | 13.9                                                       |
| Administration                              | 136                           | 49.3                                                       |
| Other activity (e.g., didactics)            | 13                            | 4.6                                                        |

| Method (in Descending Order of Popularity)                                 | Yes, I use this method<br>(%) | No, I do not use this<br>method (%) |
|----------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| Behavioral observations indicative of poor compliance                      | 92.9                          | 7.1                                 |
| Discrepancies among records                                                | 90.8                          | 9.2                                 |
| Severity of cognitive impairment inconsistent with the<br>condition        | 83.0                          | 17.0                                |
| Pattern of cognitive impairment inconsistent with<br>condition             | 81.9                          | 18.1                                |
| Implausible self-reported symptoms in interview                            | 79.4                          | 20.6                                |
| Flagged validity scales in objective personality or<br>behavioral measures | 73.7                          | 26.3                                |
| Score below empirical cutoffs on stand-alone measures of<br>validity       | 73.4                          | 26.6                                |
| Scores below chance on forced choice test                                  | 71.9                          | 28.1                                |
| Implausible changes in test scores                                         | 65.8                          | 34.2                                |
| Scores below empirical cutoffs on embedded measures                        | 60.3                          | 39.7                                |
| None                                                                       | 0.7                           | 99.3                                |

| orado | Historically, reliance on subjective judgment to<br>determine validity in pediatric evaluations                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>"Mary <u>appeared</u> to put forth her best effort on all tasks.<br/>The results are therefore considered a reliable and valid</li> </ul> |

- representation of her cognitive functioning." Objective instrumentation has allowed us to move
- away from subjective judgments in vast majority of other domains (e.g., attention, language, memory, mood). Why should test effort be different?

## • Imagine with intelligence....

¥

٠

 "Mary <u>appeared</u> to have below average intelligence. The results therefore indicate that she has an intellectual disability (aka, mental retardation)."

|   | Problems with relying only on subjective judgment<br>o identify noncredible data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | General literature suggests flaws in clinical judgment and decision-<br>making<br>• Ziskin & Faust (1988); Dawes (1994); Garb (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · | <ul> <li>Two neuropsychologically-focused studies by Faust in 1988 (children and adolescents)</li> <li>Youth (9-12; 15-17) told to perform less well than usual but not so obvious that the person testing them would know they were faking</li> <li>No instruction in how to fake</li> <li>Clinicians sent vignette that youth in MVC with LOC, unremarkable CT, and memory complaints some months later; clinicians asked to judge whether data abnormal and then speak to etiology</li> <li>Majority of clinicians thought the profile reflected abnormality</li> <li>Detection rate for malingering 0%</li> <li>Majority of clinicians confident in their judgments</li> </ul> |
|   | Faust studies criticized (eg, clinicians have access to more than simply<br>test results)<br>Bigler (1990); McCaffrey & Lynch (1992)<br>Yet, collectively, raise a number of questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • | Objective methodology has clear potential of reducing classification errors<br>• In our experienced group in Denver, many cases would not be identified<br>without PVTs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Е







| PVT                                               | Never (%) | Rarely (%) | Sometimes (%) | Often (%) | Almost Always<br>(%)     |
|---------------------------------------------------|-----------|------------|---------------|-----------|--------------------------|
| 21-Item Test                                      | 93.8      | 3.3        | 2.9           | 0.0       | 0.0                      |
| Amsterdam Short Memory Test                       | 99.3      | 0.7        | 0.0           | 0.0       | 0.0                      |
| Automatized Sequences Task                        | 90.2      | 2.5        | 2.2           | 1.8       | 3.3                      |
| The b Test                                        | 92.0      | 4.0        | 3.3           | 0.7       | 0.0                      |
| CARB                                              | 95.3      | 2.2        | 1.8           | 0.4       | 0.4                      |
| <ul> <li>CVLT-C Discriminability Index</li> </ul> | 37.0      | 5.8        | 20.7          | 20.7      | $15.9 \longrightarrow 3$ |
| CVLT-II Effort Algorithm Wolf 2010                | 86.6      | 4.0        | 5.8           | 1.8       | 1.8                      |
| CVLT-II Forced Choice                             | 27.2      | 7.2        | 29.0          | 21.4      | 15.2→ 3                  |
| Dot Counting Test                                 | 87.0      | 3.6        | 6.5           | 2.9       | 0.0                      |
| MSVT                                              | 62.0      | 6.9        | 14.1          | 10.9      | $6.2 \rightarrow \cdot$  |
| NV-MSVT                                           | 85.1      | 5.1        | 3.3           | 5.4       | 1.1                      |
| Reliable Digit Span                               | 34.8      | 8.0        | 13.8          | 22.1      | $21.4 \rightarrow 4$     |
| Rey-15 Item Test                                  | 66.3      | 17.0       | 9.1           | 6.2       | 1.4                      |
| TOMM                                              | 22.1      | 12.0       | 31.2          | 20.7      | 14.1> 3                  |
| Word Completion Memory Test                       | 95.7      | 2.2        | 0.7           | 1.4       | 0.0                      |
| WMT                                               | 69.6      | 78.0       | 8.0           | 8.7       | $5.8 \rightarrow 1$      |
| VSVT                                              | 85.5      | 6.2        | 4.0           | 2.9       | 1.4                      |



| Sy Additio | onal tests with potential utility but need more study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s          | Several PVTs have been investigated in only one identified pediatric<br>tudy or by one group<br>of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Most       | t Promising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • N        | Ionverbal Medical Symptom Validity Test (Green, 2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <ul> <li>Green, Flaro, Brockhaus, &amp; Montijo (2012); Harrison et al. (2014)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • •        | <ul> <li>Interview Strate Control Strate Contro Strate Control Strate Control Strate Control Strate Control</li></ul> |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mixe       | d Results or Very Little Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • •        | Oot Counting Test (Lezak, 1983; Rey, 1941)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <ul> <li>Martin, Haut, Stainbrook, &amp; Franzen (1995); Rambo et al. (2015)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • 2        | 1-Item Test (Iverson, 1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | <ul> <li>Martin, Haut, Stainbrook, &amp; Franzen (1995)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | computerized Assessment of Response Bias (Allen, Conder, Green & Cox, 997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | <ul> <li>Courtney, Dinkins, Allen, &amp; Kuroski (2003); Harrison et al. (2014)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • A        | msterdam Short-Term Memory Test (Schmand & Lindeboom, 2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | <ul> <li>Rienstra, Spaan, &amp; Schmand (2010)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • •        | Vord Completion Memory Test (WCMT; Hilsabeck & LeCompte, 1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | <ul> <li>Rienstra, Spaan, &amp; Schmand (2010)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Source               | Population            | N   | Age<br>Range | Mean<br>Age<br>(SD) | Trial 1<br>Mean<br>(SD) | Trial 2<br>Mean<br>(SD) | %<br>Passing* | TOMM bottom line                        |
|----------------------|-----------------------|-----|--------------|---------------------|-------------------------|-------------------------|---------------|-----------------------------------------|
| Constantinou &       | Cyprus                | 61  | 5-12         | 8.4                 | 46.8                    | 49.5                    | 97%           | <ul> <li>Most empirical wo</li> </ul>   |
| McCaffrey (2003)     | Community             |     |              | (2.1)               | (3.4)                   | (1.7)                   |               |                                         |
| Constantinou &       | U.S.                  | 67  | 5-12         | 7.9                 | 45.9                    | 49.9                    | 100%          | <ul> <li>Likely appropriate</li> </ul>  |
| McCaffrey (2003)     | Community             |     |              | (2.0)               | (3.7)                   | (0.3)                   |               | with children 5+                        |
| Rienstra et al.      | Netherlands           | 48  | 7-12         | 9.9                 |                         | 50.0                    | 100%          |                                         |
| (2010)               | Community             |     |              | (1.6)               |                         | (0.0)                   |               | years                                   |
| Schneider et al.     | U.S.                  | 30  | 4-7          | 5.6                 | 43.3                    | 47.1                    | \$5%**        |                                         |
| (2014)               | Community             |     |              | (0.8)               | (4.2)                   | (4.7)                   |               | <ul> <li>Appears specific ir</li> </ul> |
| Donders (2005)       | U.S.                  | 100 | 6-16         | 11.9                | 46.5                    | 49.7                    | 97%           | all but the most                        |
|                      | Clinical mixed        |     |              | (3.4)               | (4.2)                   | (0.72)                  |               | impaired children                       |
| MacAllister et al.   | U.S.                  | 60  | 6-17         | ~13.0               | 43.5                    | 47.5                    | 90%           |                                         |
| (2009)               | Clinical epilepsy     |     |              | (~3.5)              | (6.6)                   | (4.8)                   |               | <ul> <li>Relatively low cost</li> </ul> |
| Kirk et al. (2012)   | U.S.                  | 101 | 5-16         | 10.6                | 46.7                    | 49.6                    | 96%           |                                         |
|                      | Clinical mixed        |     |              | (3.2)               | (3.2)                   | (0.9)                   |               | <ul> <li>Unlikely to be as</li> </ul>   |
| Loughan & Pema       | U.S.                  | 86  | 6-18         | 11.6                | 45.3                    | 48.2                    | 90%           | sensitive as some                       |
| (2012)               | Clinical mixed        |     |              | (3.2)               | (5.6)                   | (4.0)                   |               |                                         |
| Brooks et al. (2012) | U.S.                  | 53  | 6-19         | 12.4                | 44.0                    | 48.4                    | 94%           | 1 other measures                        |
|                      | Clinical mixed        |     |              | (4.1)               | (5.6)                   | (5.0)                   |               | (Blaskewitz et al:                      |
| Ploetz et al. (in    | U.S.                  | 266 | 5-18         | 13.0                | 46.9                    | 46.9                    | 94%           |                                         |
| press)               | Clinical mixed        |     |              | (3.7)               | (4.7)                   | (6.3)                   |               | Rambo et al; missec                     |
| Schneider et al.     | U.S.                  | 36  | 4 - 7        | 5.5                 | 41.1                    | 44,4                    | \$5%**        | 1/3 simulators)                         |
| (2014)               | Clinical ADHD         |     |              | (1.0)               | (6.3)                   | (9.2)                   |               | · · ·                                   |
| Gast & Hart (2010)   | U.S.                  | 107 | 12-17        | 15.4                | 46.7                    | 49.7                    | 99%           | <ul> <li>More time</li> </ul>           |
|                      | Juvenile court        |     |              | (1.4)               | (3.4)                   | (0.9)                   |               | consuming than                          |
| Chafetz (2007)       | U.S.                  | 96  | 6-16         | 10.6                | 38.2                    | 40.6                    | 40%           |                                         |
|                      | Social Security       |     |              | (2.7)               | (5.5)                   | (2.4)                   |               | some other PVTs                         |
|                      | Disability applicants |     |              |                     |                         |                         |               |                                         |
| Nagle et al. (2006)  | U.S.                  | 17  | 6-12         | ~8.6                |                         | 49.7                    | 100%          | Kirkwood (2015), Review of PVTs a       |
|                      | Simulation controls   |     |              | (~2.9)              |                         | (0.8)                   |               | SVTs in children. In Kirkwood (Ed.)     |
| Blaskewitz et al.    | Germany               | 51  | 6-11         | 8.9                 |                         | 49.8                    | 100%          |                                         |
| (2008)               | Simulation controls   |     |              | (1.0)               |                         | (0.9)                   |               | Validity Testing in Child and           |
| Gunn et al. (2010)   | Australia             | 50  | 6-11         | ~8.7                | 46.6                    | 49.2                    | 98%           | Adolescent Assessment: Evaluatin        |
|                      | Simulation controls   |     |              | (~1.8)              | (3.2)                   | (1.3)                   |               | Exaggeration, Feigning, and             |
| Rambo et al. (2013)  | U.S.                  | 17  | 6 - 12       | 10.1                | 45.7                    | 49.8                    | 100%          | Noncredible Effort, Guilford Press      |





| Table 5. Summa                  | ry of pediatric studie                                               | s focus | ed on the    |                     | SVT                  |                      | ity Test              |              | GRENY'S MODICAL<br>SYMPTOM VALIONY TEST<br>(USY1)<br>An Insure Test<br>USER'S MANUAL<br>Hard Insure This<br>Charles Test State<br>Manual Control of the Second |
|---------------------------------|----------------------------------------------------------------------|---------|--------------|---------------------|----------------------|----------------------|-----------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                          | Population                                                           | N       | Age<br>Range | Mean<br>Age<br>(SD) | IR %<br>Mean<br>(SD) | DR %<br>Mean<br>(SD) | CNS %<br>Mean<br>(SD) | %<br>Passing |                                                                                                                                                                |
| Green et al.<br>(2009)          | Canada<br>Community                                                  | 56      | 7 – 11       | 9.2<br>(1.7)        | 98.6<br>(3.8)        | 98.6<br>(3.0)        | 97.6<br>(5.4)         | 96%          | GREEN'S PUBLISHING INC.                                                                                                                                        |
| Green et al.<br>(2009)          | Brazil<br>Community<br>young                                         | 36      | 6 - 10       | 8.7<br>(1.4)        | 95<br>(5)            | 99<br>(3)            | 94<br>(8)             | 98%          | and a second second                                                                                                                                            |
| Green et al.<br>(2009)          | Brazil<br>Community old                                              | 34      | 11 -<br>15   | 12.4<br>(1.3)       | 96<br>(4)            | 100<br>(2)           | 96<br>(4)             |              |                                                                                                                                                                |
| Green et al.<br>(2012)          | Canada<br>Clinical mixed ≥<br>3 <sup>rd</sup> grade reading<br>level | 265     |              | 13.6<br>(2.9)       | 98.8<br>(3.7)        | 98.0<br>(4.3)        | 97.3<br>(5.8)         | 95%          |                                                                                                                                                                |
| Carone (2008)                   | U.S.<br>Clinical mixed                                               | 38      |              | 11.8<br>(3.1)       | 98.6<br>(3.7)        | 97.6<br>(6.3)        | 96.7<br>(9.0)         | 95%          |                                                                                                                                                                |
| Kirkwood &<br>Kirk (2010)       | U.S.<br>Clinical mild TBI                                            | 193     | 8-17         | 14.5<br>(2.4)       | 95.5<br>(5.3)        | 93.6<br>(5.4)        | 93.9<br>(4.8)         | 83%          | Kirkwood (2015). Review of PVTs and SVTs in children                                                                                                           |
| <u>Chafetz</u> et al.<br>(2007) | U.S.<br>Social Security<br>Disability<br>applicants                  | 25      | 6 – 16       | 11.5<br>(2.6)       | 86.4<br>(8.0)        | 84.2<br>(9.9)        | 87.8<br>(9.1)         | 37%          | In Kirkwood (Ed.). Validity<br>Testing in Child and<br>Adolescent Assessment:                                                                                  |
| Blaskewitz et<br>al. (2008)     | Germany<br>Simulation<br>controls                                    | 51      | 6 - 11       | 8.9<br>(1.0)        | 98.6<br>(2.5)        | 99.6<br>(1.2)        | 98.2<br>(3.6)         | 98%          | Evaluating Exaggeration,<br>Feigning, and Noncredible<br>Effort. Guilford Press.                                                                               |





|                                                      |                                    |          |              |                       |                        |              | Trial                                | Cutoff<br>score                 | Sensitivity<br>(%)         | Specificity<br>(%)   |
|------------------------------------------------------|------------------------------------|----------|--------------|-----------------------|------------------------|--------------|--------------------------------------|---------------------------------|----------------------------|----------------------|
| TABLE 7.7. Mean I<br>Percentage Passing              |                                    |          | (FIT) Sc     | ores, Standard        | Deviatio               | ns, and      | FIT recall                           | <9<br><10<br><11                | 12<br>12<br>14             | 98<br>97<br>97       |
| Source                                               | Population                         | N        | Age<br>Range | Mean Age<br>(SD)      | Test<br>Mean<br>(SD)   | %<br>Passing |                                      | <12<br><13<br><14<br><15        | 16<br>49<br>53<br>59       | 97<br>87<br>87<br>86 |
| Constantinou &<br>McCaffrey (2003)<br>Constantinou & | Cyprus<br>community<br>U.S.        | 61<br>67 | 5-12         | 8.4<br>(2.1)<br>7.9   | 10.8<br>(4.7)<br>10.8  | -            | FIT recall with<br>recognition trial | <22<br><23                      | 25<br>29                   | 97<br>96             |
| McCaffrey (2003)<br>Blaskewitz et al.<br>(2008)      | community<br>Germany<br>simulation | 51       | 6-11         | (2.0)<br>8.9<br>(1.0) | (4.3)<br>12.6<br>(2.2) | 100%         |                                      | <24<br><25<br><26<br><27<br><28 | 39<br>47<br>55<br>59<br>63 | 95<br>92<br>91<br>89 |
| _                                                    | controls                           |          |              |                       |                        |              |                                      | <28<br><29<br><30               | 63<br>67<br>71             | 83<br>80<br>66       |

























| SVT                                                          | Never<br>(%) | Rarely<br>(%) | Sometimes<br>(%) | Often<br>(%) | Almost Always<br>(%)      |
|--------------------------------------------------------------|--------------|---------------|------------------|--------------|---------------------------|
| BASC-2 Validity Indicator                                    | 32.2         | 6.9           | 12.7             | 19.2         | 29.0 48                   |
| BRIEF Validity Indicators                                    | 27.2         | 7.2           | 12.0             | 21.0         | $32.6 \rightarrow 54$     |
| MMPI-A Indicators                                            | 47.1         | 15.6          | 13.4             | 13.4         | $10.5 \longrightarrow 24$ |
| Personality Inventory for Youth Validity<br>Indicators       | 86.6         | 4.3           | 3.9              | 3.2          | 2.2                       |
| Trauma Symptom Checklist for Children<br>Validity Indicators | 87.3         | 5.8           | 4.7              | 0.7          | 1.4                       |

| Odari Huqini Ganasi | BRIEF (and other domain-specific scales)<br>• No identified independent studies examining faking<br>bad or negativity scales |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|
|---------------------|------------------------------------------------------------------------------------------------------------------------------|



| 0                                                                    | MS         | VT        |                                                        |
|----------------------------------------------------------------------|------------|-----------|--------------------------------------------------------|
| BASC-2 SRP Validity Scales                                           | PASS = 224 | FAIL = 50 | Significant Test<br>Two-tailed,<br>Fisher's Exact Test |
| F Scale<br>Within "Caution" or "Extreme Caution"<br>range            | 4          | 3         | p = .117                                               |
| F scale<br>Within normal limits                                      | 220        | 47        |                                                        |
| Response Pattern<br>Within "Caution" or "Extreme Caution"<br>range   | 1          | 1         | p = .332                                               |
| Response Pattern<br>Within normal limits                             | 223        | 49        |                                                        |
| Consistency Scale<br>Within "Caution" or "Extreme Caution"<br>range  | 10         | 0         | p =.217                                                |
| Consistency Scale<br>Within normal limits                            | 214        | 50        |                                                        |
| L Scale<br>Within "Caution" or "Extreme Caution"<br>range            | 14         | 0         | p = .081                                               |
| L Scale<br>Within normal limits                                      | 210        | 50        |                                                        |
| V Scale<br>Within "Caution" or "Extreme Caution"<br>range            | 2          | 0         | p =1.00                                                |
| V Scale<br>Within normal limits                                      | 222        | 50        |                                                        |
| Any Validity Scale<br>Within "Caution" or "Extreme Caution"<br>range | 29         | 4         | p = .471                                               |
| Any Validity Scale<br>Within normal limits                           | 195        | 46        |                                                        |



Y

¥

- First identified study to examine a self-report validity scale in a real-world pediatric sample of noncredible responders
- Vast majority of patients who failed the MSVT provided valid self-report BASC-2 profiles
- Data contrasts with many adult studies demonstrating selfreport validity scales strongly associated with PVT performance
- Sole reliance on validity indicators from the BASC-2 (and other child self-report scales?) likely to substantially underestimate the number of patients providing invalid data during neuropsychological evaluation

| Table 11 | Frequency of Statements | to Communicate | (Verbally or in | Report) Noncredibl | e/Invalid Data. |
|----------|-------------------------|----------------|-----------------|--------------------|-----------------|
|----------|-------------------------|----------------|-----------------|--------------------|-----------------|

| Statement                                                | Never<br>(%) | Rarely<br>(%) | Sometimes<br>(%) | Often<br>(%) | Almost<br>Always<br>(%) |
|----------------------------------------------------------|--------------|---------------|------------------|--------------|-------------------------|
| Test results are invalid                                 | 10.6         | 23.0          | 40.4             | 18.1         | 7.4                     |
| Test results indicate inadequate effort to perform well  | 12.1         | 12.5          | 35.8             | 33.6         | 6.0                     |
| No firm conclusions can be drawn                         | 9.3          | 16.2          | 37.4             | 31.3         | 6.0                     |
| Test results are inconsistent with severity of condition | 5.7          | 12.8          | 40.8             | 35.1         | 5.7                     |
| Test results indicate inadequate engagement              | 15.9         | 15.9          | 40.5             | 23.1         | 4.5                     |
| Test results indicate poor compliance                    | 18.9         | 20.5          | 37.9             | 18.2         | 4.5                     |
| Test results indicate exaggeration or feigning           | 28.3         | 31.7          | 32.8             | 4.9          | 2.3                     |
| Test results indicate malingering                        | 64.9         | 28.7          | 5.7              | 0.4          | 0.4                     |

Children's Hospital Colorado Opening Statement for Parent Feedback in Face of Noncredible Effort (Connery, Baker, Peterson, & Kirkwood)

"Whenever we do these evaluations, we give tests that measure whether children are trying their best to do well in order to make sure the test results are valid. In other words, when a child does not do well on testing, we want to make sure that it is due to an actual weakness rather than to a child not trying his/her best. During today's evaluation, these tests showed that XXX was not always trying his/her best to do well. What are your thoughts about this? Do you have ideas on why this might have happened?"



| Justification                                                                                               | % of<br>Respondents |
|-------------------------------------------------------------------------------------------------------------|---------------------|
| Justification for using PVTs                                                                                |                     |
| Independent research supports their utility.                                                                | 76.5                |
| They are necessary to validate other test results.                                                          | 68.3                |
| My own experience leads me to believe I need them.                                                          | 64.9                |
| Practice organizations recommend their use.                                                                 | 50.6                |
| Their use protects examinees.                                                                               | 27.7                |
| Their use protects me from allegations of misconduct.                                                       | 23.0                |
| Third parties insist on it (e.g., College Boards).                                                          | 18.1                |
| None-I rarely or never use PVTs in my practice with those under 18 years of age.                            | 9.8                 |
| I have additional reasons for using PVTs in my pediatric practice not captured here.                        | 76.8                |
| Justification for not using PVTs                                                                            |                     |
| They are difficult to interpret in very young children (e.g., under 6 years of age).                        | 50.8                |
| They are difficult to interpret in the face of severe cognitive impairment.                                 | 38.9                |
| Exaggeration or feigning is usually obvious in a child's general presentation.                              | 18.8                |
| They take too much time.                                                                                    | 16.7                |
| Exaggeration or feigning is usually obvious in the pattern of a child's test scores.                        | 13.4                |
| They are difficult to interpret in those under 18 years of age.                                             | 11.1                |
| The yield in most cases is not worth the financial cost.                                                    | 9.6                 |
| Clinical cases rarely exaggerate or malinger so they are typically unnecessary in non-forensic<br>settings. | 8.4                 |
| I have not received adequate training to use them.                                                          | 7.5                 |
| Third parties do not pay for them (e.g., SSI disability).                                                   | 5.0                 |
| Too many genuine patients or claimants are wrongly classified by these tests.                               | 2.5                 |
| They are unreliable.                                                                                        | 2.1                 |
| Identification of exaggeration or feigning might harm the child.                                            | 2.1                 |
| Identification of exaggeration or feigning might harm the reputation of my practice.                        | 1.7                 |
| None-I almost always or always use PVTs in my practice with those under 18 years of age.                    | 30.5                |
| I have additional reasons for not using PVTs in my pediatric practice not captured here.                    | 14.6                |



| General                                                              | Pediatric C                         | Clinic | al Case         | Series |                  |
|----------------------------------------------------------------------|-------------------------------------|--------|-----------------|--------|------------------|
| Source                                                               | Population                          | N      | Age             | PVT    | %<br>Noncredible |
| Donders (2005)                                                       | Mixed Neuro                         | 100    | 6 – 16          | TOMM   | 2%               |
| Carone (2008)                                                        | Moderate-<br>Severe Brain<br>Injury | 38     | (mean:<br>11.8) | MSVT   | 5%               |
| MacAllister, Nakhutina,<br>Bender, Karantzoulis, &<br>Carlson (2009) | Epilepsy                            | 60     | 6 – 17          | TOMM   | 3%               |
| Green et al. (2010)                                                  | Mixed<br>Neuro/Dev                  | 380    |                 | WMT    | 5%               |
| Green et al. (2010)                                                  | Mixed<br>Neuro/Dev                  | 265    |                 | MSVT   | 3%               |
| Kirk, Harris, Hutaff-Lee,<br>Koelmay, Dinkins, & Kirkwood<br>(2011)  | Mixed<br>Neuro/Dev                  | 100    | 5 – 16          | TOMM   | 4%               |
| Brooks (2012)                                                        | Mixed Neuro                         | 100    | 6 – 19          | VSVT   | 5%               |
| Ploetz, Mosiewicz, Kirkwood,<br>Sherman, & Brooks (2014)             | Mixed Neuro                         | 266    | 5 – 18          | TOMM   | 3%               |

| eren's Mongoltal Colorado                                                                                                                                                                                                 | Pediatric Case Series:<br>Mild TBI |                |        |                                                              |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--------|--------------------------------------------------------------|-------------------------------|
| Source                                                                                                                                                                                                                    | Population                         | N              | Age    | PVT                                                          | % Noncredible<br>Presentation |
| Children's Hospital<br>Colorado<br>Kirkwood & Kirk (2010);<br>Kirkwood et al. (2011);<br>Kirkwood et al. (2012);<br>Kirkwood et al. (2013);<br>Green et al. (2014);<br>Kirkwood et al. (2014);<br>Kirkwood et al. (2014); | Mild TBI<br>(clinical)             | 1000+<br>total | 8 – 17 | MSVT +<br>TOMM<br>Rey FIT<br>Various<br>embedded<br>measures | 12 – 19%                      |
| Araujo et al. (2014)                                                                                                                                                                                                      | Mild TBI<br>(clinical)             | 382            | 8 – 16 | RDS<br>Digit Span                                            | 20%                           |

| 8 L. | Pediatric Case Series:<br>Independent Setting (Social Security Disability) |                                                                 |     |       |              |                                                    |  |
|------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-----|-------|--------------|----------------------------------------------------|--|
|      | Source                                                                     | Population                                                      | N   | Age   | PVT          | % Noncredible<br>Presentation                      |  |
|      | Chafetz et al. (2007);<br>Chafetz (2008)                                   | Social<br>Security<br>Disability<br>Claimaints<br>(independent) | 123 | 6 –16 | TOMM<br>MSVT | 48-60%<br>(26-30% PVT<br>chance level or<br>below) |  |
|      |                                                                            |                                                                 |     |       |              | 51                                                 |  |

## Implications of PVT Failure for Interpreting Other Data During a Cognitive Exam SOWHAT? Multiple studies with adults have suggested that PVT performance relates strongly to ability-based tests Green et al., 2001; Constantinou et al., 2005; Green, 2007; Lange et al., 2010; Meyer et al., 2011 In these samples (mostly compensation-seeking), ~50% variance in neuropsychological test scores explained by PVT performance (much more variance than explained by brain injury severity, education, age, etc.) Up until few years ago, no identified studies in pediatric populations: similar effects?

| <b>.</b>                          | Psychological Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>O 2011 Amorican Prochedupical Association<br/>1046-359011512:00</li> <li>DOE 10.11373/00724/28</li> </ul>     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| •<br>Children's Hospital Colorado | The Implications of Symptom Validity 7<br>Performance in a Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |
|                                   | Michael W. Kirkwood<br>University of Colorado Denver School of Medicine and Th<br>Children's Hospital Colorado, Aurora, Colorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Keith Owen Yeates<br>e Ohio State University and Nationwide Children's Hospital,<br>Columbus, Ohio                     |
|                                   | Christopher Randolph<br>Loyola University Medical Center, Maywood, Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | John W. Kirk<br>University of Colorado Denver School of Medicine and<br>Children's Hospital Colorado, Aurora, Colorado |
|                                   | Table 1<br>Background and Injury Characteristics of All Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | urticipants                                                                                                            |
|                                   | Participants<br>Age (roam)<br>Grade<br>Make<br>Estimated Full Scale IQ*<br>Estimated Full Scale IQ*<br>Maternal years of education<br>Paremethe biolary of attaintion-deficit/hyperactivity dis<br>Paremethe biology of diagnosed learning disability<br>Paremethe in the start of the start of the start<br>West's single conducted<br>Interactual Indiagn on computed tomography or mage<br>minibies to phone toga linguistica<br>Families seeking disability compensation<br>Families colored starts of the start of the start of the start<br>Families seeking disability compensation<br>Participants charged with a crime | n = 29 (11%)<br>n = 35 (13%)<br>M = 9.7, SD = 9.1; Mdn = 6.0<br>n = 49 (18%)<br>n = 200 (73%)                          |



|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | -                                                       |                                                        |
|------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| Antone Mad |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        |                                                         |                                                        |
| erween Mêd | ical Symptom                                                              | Validity Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | st Pass an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d Fail Group                                           | s on Ability                                           | Based Tests                                             |                                                        |
|            | Pass                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fail                                                   |                                                        |                                                         |                                                        |
| n          | М                                                                         | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                                                      | SD                                                     | Р                                                       | d                                                      |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | _                                                       |                                                        |
| 215        | 105.5                                                                     | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.5                                                   | 13.4                                                   | <.001*                                                  | 0.9                                                    |
| 215        |                                                                           | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 10.9                                                   | .045                                                    | 0.3                                                    |
| 215        | 52.4                                                                      | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.0                                                   | 10.6                                                   | <.001**                                                 | 1.4                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | $\sim$                                                  |                                                        |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | .002*                                                   | 0.7                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | C.001                                                   | 1.6                                                    |
| 180        | 0.18                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.47                                                  | 1.6                                                    | 5.001                                                   | 1.0                                                    |
| 224        | 9.9                                                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                    | 3.2                                                    | < 001*2                                                 | 1.2                                                    |
| 207        | 9.7                                                                       | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                    | 3.1                                                    | 2.001                                                   | 0.6                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | $\overline{}$                                           |                                                        |
| 213        | -0.25                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.7                                                   | 2.5                                                    | .001**                                                  | 0.9                                                    |
| 215        | -0.41                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.6                                                   | 2.2                                                    | 001                                                     | 0.7                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        |                                                         |                                                        |
| 191        | 100.2                                                                     | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.0                                                   | 22.0                                                   | .347                                                    | 0.3                                                    |
| 214        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | 10.0                                                   | 00111                                                   | 0.8                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | 012                                                     | 0.8                                                    |
|            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                        | C 001**                                                 | 1.2                                                    |
| 214        | 6.1                                                                       | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.0                                                   | 6.8                                                    | 2 001**                                                 | 1.2                                                    |
|            | 215<br>215<br>215<br>215<br>186<br>186<br>186<br>186<br>224<br>207<br>213 | я М<br>215 1055<br>215 53,6<br>215 53,6<br>186 53,0<br>186 0,34<br>186 0,34<br>197 0,77<br>207 0,77 | n         M         3D           215         105.5         11.6           215         35.6         5.2           186         5.0         8.4           186         0.18         0.6           224         9.9         2.9           207         9.7         3.3           215         -0.25         1.4           215         -0.25         1.4           215         -0.41         1.5           191         10.02         9.7           216         5.6         6.1           172         4.3         1.4 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |







