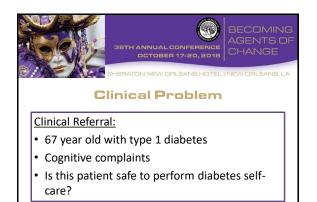
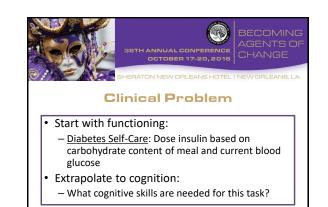

Workshop Agenda

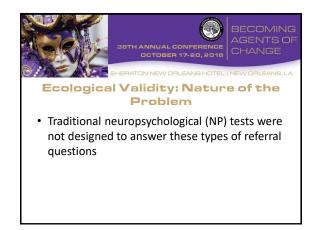
9:00-10:20 10:20-10:40 10:40-12:00 Ecological Validity (Chaytor) Break (20 mins) Naturalistic Assessment (Robertson)

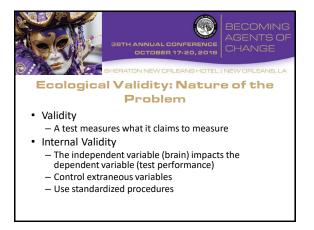


Learning Objectives

- 1. Describe the difference between ecological validity and other forms of test validity
- 2. Appreciate how ecological validity research findings can inform clinical neuropsychological practice
- Understand the utility of naturalistic assessment, as well as the strengths and weaknesses of varying approaches.






- Extrapolate to function:
- If there is brain dysfunction, make inferences about the impact on diabetes care:
 - Memory impairment → Forget to bolus?
 - Executive Impairment \rightarrow Can't estimate carbohydrate content? • Attention Impairment → Miscalculate insulin dose?

External validity:


- Do findings in the lab generalize to other populations, places and over time?
- Ecological validity:
- Results generalize to typical settings in everyday life
- Specific type of external validity
- Also can be a type of criterion-related validity

 Executive functioning and memory are important for most everyday functioning tasks

- 90 year old man with "average" RAVLT delayed recall (SS = 90)
- Raw score = 3/15 (20% of information recalled)
- · Which is more likely to predict medication taking?
- Criterion-based norms are needed

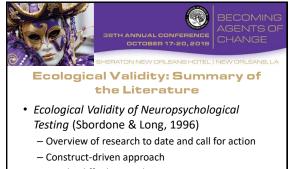
BECOMING SBTH ANNUAL CONFERENCE OCTOBER 17-20, 2018 BHERATON NEW ORLEANS HOTEL I NEW ORLEANS, LA Ecological Validity: Dating Scales

Ecological Validity: Rating Scales

- Pros

 Easy/quick
 - Comprehensive (multiple behaviors over time)
- Cons
 - Subjective (recall bias, negative or positive bias, secondary gain)
 - Does not account for variable environmental demands
 - Gender roles (e.g., never cooked)
 Changing lifestyles (e.g., recalls phone numbers)
 - How do you validate? What is the gold standard?

- Education, relationship quality, time spent with patient, opportunities to observe
 Clinician
- Opportunities to observe, base rates/"normal" reference criteria
 Teacher
- Environment, social factors, expectancies, interpretations of behavior



Ecological Validity: Rating Scales

- · The specificity of the assessment matters
 - Everyday cognitive problems
 - Specific cognitive domains (e.g., FrsBe, DEX)
 - General Cognition (e.g., Neuro-QoL)
 - Instrumental ADLs (vs. ADLs)
 - Specific domains (e.g., finances, cooking, driving)
 - Comprehensive surveys (e.g., FAQ, Lawton-Brody)
 - · Variation in amount of cognition needed for the behavior

- Not available for all outcomes of interest
- Low base rate events (e.g., driving; doesn't include near misses)
- Binary outcome (accident vs no accident)
- Often multi-determined complex data (e.g., employment)

- Results differ by population

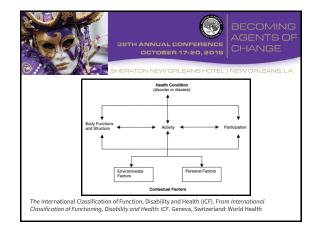
NP tests have small to medium effect sizes in predicting work status (EF.

Memory and IQ)

BECOMING BETH ANNUAL CONFERNCE OCTOBER 17-20, 2018 BECOMING CENTRE 17-20, 2018 BECOMING

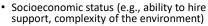
- some measures of executive control function are relatively strong correlates of medical or financial decision-making
- "general" cognitive screening tests are surprisingly strong correlates of functional status.

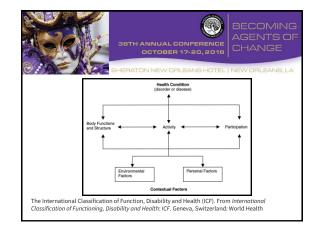
- Inductive reasoning largest predictor (R² = .18) of concurrent older adult everyday functioning
 Speed poorer predictor
- Memory at baseline predicted ($R^2 = .06$) decline in everyday functioning

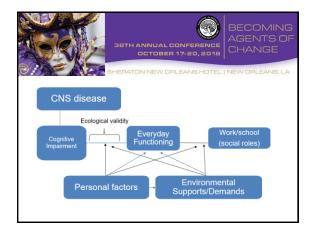


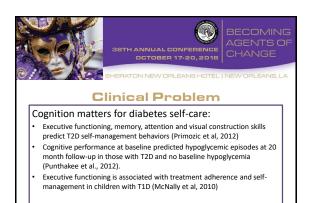
- Neuropsychology of Everyday Functioning (Marcotte & Grant, 2010)
 - Another call to action
 - Function-led approach
 - Separated by population (i.e., siloed research)

- Special issue on Ecological Validity in Neuropsychological Rehabilitation, vol 27, No. 5, 2017
 - Representative tests have become more practical
 - Function-led vs construct-led assessment



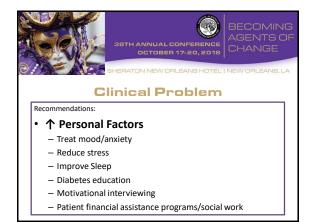



- The environment is a powerful determinant of whether cognitive impairment will impact everyday functioning or not (e.g., professor being late vs., hourly employee being late)
- naturalistically emerging supports and barriers

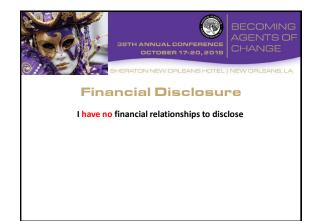


Clinical Problem

- Is this patient safe to manage diabetes selfcare?
 - Environmental supports/demands?
 - Personal Factors?
 - Compensatory Strategies?



- How much variability in their routine/meals? How much do they eat out in restaurants? Does their treatment change often? Does someone else help them?
 Personal factors:
- How long have they had diabetes? How much diabetes education have they had?
 Comorbid medical and psychiatric disorders? Diabetes distress? Hypoglycemia fear?
- Compensatory strategy Use:
- Do they have an insulin pump that calculates carb to insulin ratio?
 Continuous glucose monitor that will alert if blood glucose is low/high?
- Do they use carbohydrate counting apps (e.g., My Fitness Pal)?


- Using passive sensor data to assess everyday functioning
 Smart home technology, activity trackers, GPS, continuous glucose monitoring
- Mobile cognitive assessment (cognitive ecological momentary assessment)
 - Assessment in real-world environments and simultaneous assessment of the environment (e.g., noise, location, other people)
 - Repeated short cognitive assessments over days/weeks (
 representativeness)
 - Assess variability in performance risk for low base-rate events
 - Impact of fluctuating state factors (mood, stress, fatigue)

- Compensatory strategy use
- What is the relative importance of each?
- Evidence based clinical algorithms? Precision medicine?

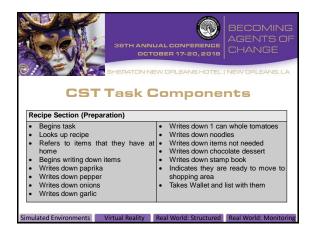
Tasks that simulate real world activities within a lab/office setting

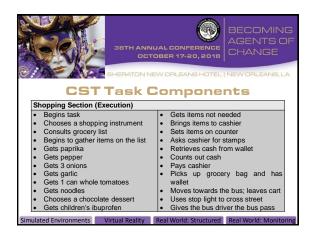
- Executive Function Performance Test (EFPT; Baum, Morrison, Hahn, & Edwards, 2003)
- Naturalistic Action Test (NAT; Schwartz et al., 2003)
- Medication Management Ability Assessment (MMAA; Patterson et al., 2002)

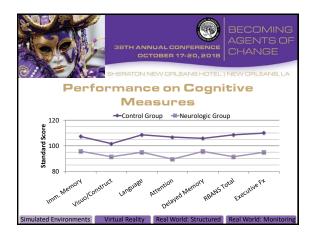
Simulated Environments 📃 Virtual Reality 🛛 Real World: Structured 🗍 Real World: Monitor

- Rivermead Behavioral Memory Test (RBMT; Wilson et al., 2008) Texas Functional Living Scale (TFLS; Cullum, Saine, & Weiner)
- Prospective memory tasks Telephone Task (Delprado, Kinsella, Ong, & Pike, 2013)

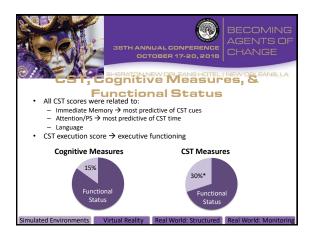
- But other research says that they do not always translate to everyday functioning Simulated Environments 📃 Virtual Reality 🛛 Real World: Structured 🗍 Real World: Monitori
- **Considerations/Limitations** More contextually and face validity realistic stimuli Little research on how these lab-based Convenient and accessible tasks relate to everyday functioning Limited ecological mulated Environments Virtual Reality Real World: Structured Real World: Mo

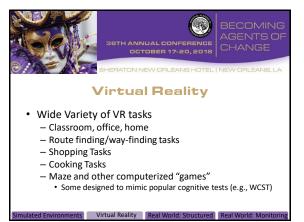


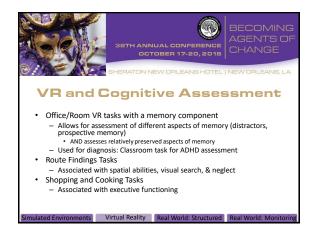


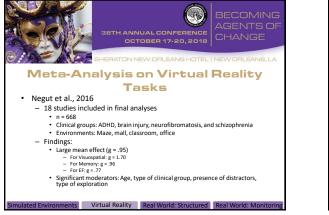






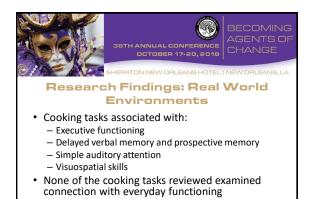

Simulated Environments 📃 Virtual Reality 🛛 Real World: Structured 🗍 Real World: Monitori





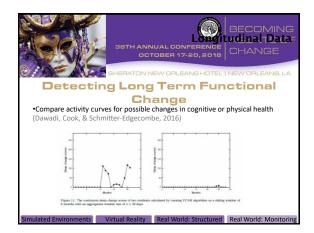
– VR MET and real world MET: High concordance

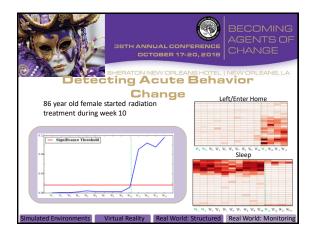
lated Environments Virtual Reality Real World: Structured Real World: Mo


- Analogous WCST tasks: Modest to strong correlations
- VR cooking task and real cooking tasks: Not significantly correlated

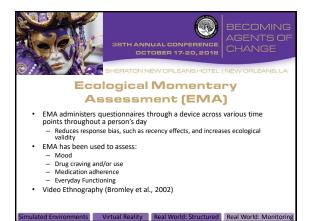
ulated Environments Virtual Reality Real World: Structured Real World: Monit

- Infrared and motion sensors for movement
 Magnetic door sensors
- Magnetic door sensors
 Vibration and pressure sensors for objects
- Vibration and
 Light sensors
- Temperature and humidity sensors
- Whole-home electricity consumption sensors

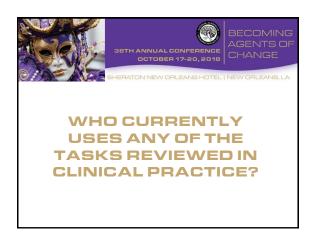




imulated Environments 💿 Virtual Reality 🛛 Real World: Structured 🛛 Real World: Monitoring


- Use smart home data
 Predict clinical scores
 Model daily behavior
- People Living in Own Smart Homes: tracked for > 2 years; clinical data collected every 6 months

nulated Environments Virtual Reality Real World: Structured Real World: Monitor



- · Difficulty accounting for this in many of the structured naturalistic tasks
- · Monitoring and observation via naturalistic assessment

Current Clinical Use

- Survey of 750 Neuropsychologists: 10% use ecologically valid measures Whv?
 - Assumption that traditional tests are ecologically valid (despite limited evidence)
 - Tendency to stick with tests on which a person was trained
 - View that verisimilitude is synonymous with face validity, suggesting a less rigorous or "unscientific" evaluation of the ecological validity of a measure, even if they have research behind them Belief that tests based on verisimilitude overlap with OT
 - _
 - Belief that traditional tests measure specific constructs (although the application of labels to cognitive domains has been somewhat ambiguous)

Spooner & Pachana, 2006

BECOMING AGENTS OF CTOBER 17-20, 2018 BHERATON NEW OFLEANS HOTEL I NEW OFLEANS, LA			
Demographics:	Test	%ile	Descriptor
40 years old	WTAR	93 rd	Superior
· · ·	RBANS Indexes		
Female 16 years of education MS Diagnosed over 10 years ago	Immediate Memory	5 th	Borderline
	Visuospatial/Constructional	1st	Impaired
	Language	45 th	Average
	Attention	34 th	Average
	Delayed Memory	18 th	Low Average
	Total Score	8 th	Borderline
	D-KEFS subtests		
	Design Fluency	63 rd	Average
	Letter Fluency	1 st	Impaired
	Digit Cancellation	35 th	Average
	Grip Strength	N/A	Dominant hand=BNL Non-Dominant Hand= BNL

• Call for more research

